IVDM

Danny Marfatia

with Feng, Kumar, Sanford 1102.4331

Evidence is gravitational

- Galactic rotation curves
- Large scale structure
- Cosmic microwave background anisotropies
- Gravitational lensing

Little is known about dark matter

- Abundance is 23%
- Long-lived
- Not hot
- Not baryonic

Too many candidates?

The WIMP miracle is aesthetically pleasing

$$\langle \sigma v \rangle = 3 \times 10^{-26} \text{cm}^3/\text{s}$$

- required to get the correct relic denisty
- obtained with weak scale masses and couplings

Today dark matter physics is anomaly driven!

Direct detection

Indirect detection

Direct detection

Scattering cross section

$$\bullet$$
 SI: $\sigma_A \propto [f_p Z + f_n (A-Z)]^2$

$$\bullet f_n = f_p \implies \sigma_A \propto [f_p A]^2$$

lacktriangle No reason to assume $f_n=f_p$

For
$$f_n/f_p = \frac{-Z}{A-Z}$$
, $\sigma_A = 0!$

Annual modulation

Max on June 2, min on Dec 2 phase = 152 days

DAMA/LIBRA

2.8 sigma

Modulations?

- In the energy bins 0.5-0.9 keVee, 0.9-3 keVee and 3-4.5 keVee, the goodness-of-fit for no modulations is acceptable
- 1.9 sigma evidence for modulations in the first bin
- 3 sigma evidence in the second bin... but the fitted phase is 2 sigma too low from the expectation
- No modulations in the third bin

Inconsistent picture:

- Insignificant modulation in the first bin is in conflict with expectation from the energy spectrum
- Using DM for the spectrum, modulation in the second bin is reduced significantly and is only slightly preferred over no modulations
- i.e., modulation is not explained in the region where the signal is strongest
- DM favored by modulation signal is excluded by the unmodulated rate
- Need to simultaneously explain excess in unmodulated rate below 0.9 keVee and significant modulation above

CRESST

- 9 CaWO_4 crystals
- Several targets in single detector
- 400 kg-day exposure
- No excess in Ca and W bands
- 32 events in O band. Expected bkg is 9

XENON

S1: prompt scintillation
S2: secondary scintillation

Electronic recoil

Nuclear recoil

$$\left(\frac{\mathrm{S2}}{\mathrm{S1}}\right)_{\mathrm{n},\chi} \ll \left(\frac{\mathrm{S2}}{\mathrm{S1}}\right)_{\mathrm{e},\gamma}$$

$$rac{S2}{S1} \propto rac{Q_y}{L_{eff}}$$
 (# of detected e- per keV)

XENON10 bound using only S2 data

with channeling

$f_n/f_p = 1$

Is it possible to reconcile DAMA with CoGeNT and evade XENON bounds?

Isotopes of Xe (Z=54)

Α	128	129	130	131	132	134	136
Abundance (%) $[\eta_i]$	1.9	26.4	4.1	21.2	26.9	10.4	8.9
$\sigma_A = 0$ at $f_n/f_p =$	-0.73	-0.72	-0.71	-0.70	-0.69	-0.675	-0.66

Cannot have complete destructive interference for more than one isotope

$$f_n/f_p = -0.7$$

Scattering on Na is enhanced compared to Ge

Can XENON exclude the IVDM explanation?

Element	Xe	Ge	Si	Ca	W	Ne	С
Xe (54,*)	1.00	8.79	149.55	138.21	10.91	34.31	387.66
Ge(32,*)	22.43	1.00	68.35	63.14	130.45	15.53	176.47
Si (14,*)	172.27	30.77	1.00	1.06	757.44	1.06	2.67
Ca (20,*)	173.60	31.53	1.17	1.00	782.49	1.10	2.81
W (74,*)	2.98	13.88	177.46	166.15	1.00	41.64	466.75
Ne (10,*)	163.65	28.91	4.39	4.09	726.09	1.00	11.52
C(6,*)	176.35	32.13	1.07	1.02	789.59	1.12	1.00
I (53,127)	1.94	5.51	127.04	118.35	20.68	28.92	326.95
Cs(55,133)	1.16	7.15	139.65	127.61	12.32	31.88	355.27
O (8,16)	178.49	32.13	1.08	1.03	789.90	1.13	1.01
Na (11,23)	101.68	13.77	8.45	8.33	481.03	2.27	22.68
Ar (18,36)	178.49	32.13	1.08	1.03	789.90	1.13	1.01
F (9,19)	89.39	10.88	12.44	11.90	425.93	3.05	33.47

XENON has to exclude CoGeNT by a factor of 22.43 XENON has to exclude DAMA by a factor of 101.68

Predictions?

- ${\it o}$ CRESST oxygen: $\sigma_N^{Z=8} \simeq 8.5 \sigma_N^{Z=32}$
- \bullet COUPP carbon: $\sigma_N^{Z=6} \simeq 8.4 \sigma_N^{Z=32}$
- \odot COUPP fluorine: $\sigma_N^{Z=9} \simeq 4.2 \sigma_N^{Z=32}$

New bound from SIMPLE (C_2CIF_5)

SIMPLE problem for $f_n/f_p=-0.7$

Scattering on Cl and F is enhanced compared to Ge!

Conclusions

- IVDM can reconcile CoGeNT and DAMA and evade bounds from XENON100
- For this explanation to be viable CDMS-Ge and SIMPLE need to be wrong
- It is possible that DAMA or CoGeNT or both are not seeing DM
- Independently of DAMA/CoGeNT it is clear that the assumption of isospin-conservation has far-reaching consequences and should be relaxed in DM studies